Quantum Machine Learning
Quantum algorithms and hybrid systems for next-generation machine learning
š¬ Experimental Technology Notice
Quantum Machine Learning is an emerging field at the intersection of quantum computing and AI. Current quantum computers are in the NISQ (Noisy Intermediate-Scale Quantum) era with limited qubits and high error rates. Most quantum ML algorithms are theoretical or require fault-tolerant quantum computers not yet available. This content explores the potential and current research directions. Production applications are primarily in simulation and research.
Quantum ML Domains
Quantum ML Algorithms
Quantum Machine Learning Framework
import numpy as np
from typing import Dict, List, Tuple, Optional, Union
import matplotlib.pyplot as plt
from abc import ABC, abstractmethod
# Quantum computing simulation libraries
try:
import qiskit
from qiskit import QuantumCircuit, Aer, execute, transpile
from qiskit.circuit import Parameter, ParameterVector
from qiskit.algorithms.optimizers import SPSA, COBYLA
from qiskit.opflow import X, Y, Z, I, StateFn, CircuitStateFn, PauliExpectation
from qiskit.utils import QuantumInstance
QISKIT_AVAILABLE = True
except ImportError:
QISKIT_AVAILABLE = False
print("Qiskit not available. Using simulation framework.")
class QuantumMLFramework:
"""
Comprehensive framework for Quantum Machine Learning
Features:
- Quantum circuit design and optimization
- Hybrid classical-quantum algorithms
- Quantum feature maps and kernels
- Variational quantum algorithms
- Quantum data encoding and decoding
"""
def __init__(self, config: Dict):
self.config = config
self.num_qubits = config.get('num_qubits', 4)
self.shots = config.get('shots', 1024)
# Quantum backend setup
if QISKIT_AVAILABLE:
self.backend = Aer.get_backend('qasm_simulator')
self.quantum_instance = QuantumInstance(self.backend, shots=self.shots)
else:
self.backend = None
print("Using classical simulation of quantum circuits")
# Quantum algorithms
self.algorithms = {
'qsvm': QuantumSVM(self),
'qnn': QuantumNeuralNetwork(self),
'qpca': QuantumPCA(self),
'qkmeans': QuantumKMeans(self)
}
# Classical-quantum hybrid optimizers
self.optimizers = {
'spsa': SPSA(maxiter=100) if QISKIT_AVAILABLE else None,
'cobyla': COBYLA(maxiter=200) if QISKIT_AVAILABLE else None
}
def create_feature_map(self, num_features: int, depth: int = 2,
entanglement: str = 'linear') -> QuantumCircuit:
"""Create quantum feature map for data encoding"""
if not QISKIT_AVAILABLE:
return self._simulate_feature_map(num_features, depth, entanglement)
# Create parameterized quantum circuit for feature encoding
feature_map = QuantumCircuit(self.num_qubits)
# Parameters for data encoding
parameters = ParameterVector('x', num_features)
# Data encoding layers
for layer in range(depth):
# Rotation gates for data encoding
for i in range(min(num_features, self.num_qubits)):
feature_map.ry(parameters[i], i)
# Entangling gates
if entanglement == 'linear':
for i in range(self.num_qubits - 1):
feature_map.cnot(i, i + 1)
elif entanglement == 'full':
for i in range(self.num_qubits):
for j in range(i + 1, self.num_qubits):
feature_map.cnot(i, j)
return feature_map
def create_ansatz(self, num_parameters: int, depth: int = 2) -> QuantumCircuit:
"""Create variational ansatz for quantum machine learning"""
if not QISKIT_AVAILABLE:
return self._simulate_ansatz(num_parameters, depth)
ansatz = QuantumCircuit(self.num_qubits)
# Variational parameters
theta = ParameterVector('Īø', num_parameters)
param_idx = 0
for layer in range(depth):
# Rotation gates with variational parameters
for i in range(self.num_qubits):
if param_idx < num_parameters:
ansatz.ry(theta[param_idx], i)
param_idx += 1
if param_idx < num_parameters:
ansatz.rz(theta[param_idx], i)
param_idx += 1
# Entangling layer
for i in range(self.num_qubits - 1):
ansatz.cnot(i, i + 1)
return ansatz
def quantum_kernel(self, x1: np.ndarray, x2: np.ndarray,
feature_map: QuantumCircuit) -> float:
"""Compute quantum kernel between two data points"""
if not QISKIT_AVAILABLE:
return self._simulate_quantum_kernel(x1, x2)
# Create quantum circuit for kernel computation
kernel_circuit = QuantumCircuit(self.num_qubits, 1)
# Encode first data point
bound_circuit1 = feature_map.bind_parameters(x1)
kernel_circuit.compose(bound_circuit1, inplace=True)
# Encode second data point (conjugate)
bound_circuit2 = feature_map.bind_parameters(x2)
kernel_circuit.compose(bound_circuit2.inverse(), inplace=True)
# Measure overlap
kernel_circuit.measure_all()
# Execute circuit
job = execute(kernel_circuit, self.backend, shots=self.shots)
result = job.result()
counts = result.get_counts()
# Calculate kernel value (probability of measuring |0...0ā©)
zero_state = '0' * self.num_qubits
kernel_value = counts.get(zero_state, 0) / self.shots
return kernel_value
class QuantumSVM:
"""Quantum Support Vector Machine implementation"""
def __init__(self, framework: QuantumMLFramework):
self.framework = framework
self.feature_map = None
self.training_data = None
self.training_labels = None
self.support_vectors = None
self.alpha = None
def fit(self, X: np.ndarray, y: np.ndarray) -> Dict:
"""Train quantum SVM"""
print("Training Quantum SVM...")
# Create quantum feature map
num_features = X.shape[1]
self.feature_map = self.framework.create_feature_map(num_features)
# Store training data
self.training_data = X
self.training_labels = y
# Compute quantum kernel matrix
kernel_matrix = self._compute_kernel_matrix(X)
# Solve SVM optimization (classical part)
self.alpha, self.support_vectors = self._solve_svm_optimization(kernel_matrix, y)
# Calculate training accuracy
train_predictions = self.predict(X)
train_accuracy = np.mean(train_predictions == y)
return {
'training_accuracy': train_accuracy,
'num_support_vectors': len(self.support_vectors),
'kernel_matrix_shape': kernel_matrix.shape
}
def predict(self, X: np.ndarray) -> np.ndarray:
"""Make predictions using trained quantum SVM"""
if self.support_vectors is None:
raise ValueError("Model must be trained before making predictions")
predictions = []
for x in X:
# Compute kernel values with support vectors
kernel_values = []
for sv_idx in self.support_vectors:
sv = self.training_data[sv_idx]
kernel_val = self.framework.quantum_kernel(x, sv, self.feature_map)
kernel_values.append(kernel_val)
# Compute decision function
decision_value = sum(
self.alpha[i] * self.training_labels[sv_idx] * kernel_values[i]
for i, sv_idx in enumerate(self.support_vectors)
)
# Binary classification
prediction = 1 if decision_value > 0 else -1
predictions.append(prediction)
return np.array(predictions)
def _compute_kernel_matrix(self, X: np.ndarray) -> np.ndarray:
"""Compute quantum kernel matrix for training data"""
n_samples = X.shape[0]
kernel_matrix = np.zeros((n_samples, n_samples))
for i in range(n_samples):
for j in range(i, n_samples):
kernel_val = self.framework.quantum_kernel(X[i], X[j], self.feature_map)
kernel_matrix[i, j] = kernel_val
kernel_matrix[j, i] = kernel_val # Symmetric
return kernel_matrix
def _solve_svm_optimization(self, kernel_matrix: np.ndarray,
y: np.ndarray) -> Tuple[np.ndarray, List[int]]:
"""Solve SVM optimization problem (simplified)"""
# Simplified SVM optimization (in practice, use SMO algorithm)
n_samples = len(y)
# Initialize alpha coefficients
alpha = np.random.uniform(0, 1, n_samples)
alpha = alpha / np.sum(alpha) # Normalize
# Simple iterative optimization (placeholder)
for iteration in range(100):
# Update alpha based on gradient descent (simplified)
gradient = self._compute_gradient(alpha, kernel_matrix, y)
alpha = alpha - 0.01 * gradient
alpha = np.clip(alpha, 0, 1) # Constraints
# Identify support vectors (non-zero alpha)
support_vectors = [i for i, a in enumerate(alpha) if a > 1e-6]
return alpha, support_vectors
def _compute_gradient(self, alpha: np.ndarray, kernel_matrix: np.ndarray,
y: np.ndarray) -> np.ndarray:
"""Compute gradient for SVM optimization"""
# Simplified gradient computation
gradient = np.ones(len(alpha))
for i in range(len(alpha)):
gradient[i] -= sum(
alpha[j] * y[i] * y[j] * kernel_matrix[i, j]
for j in range(len(alpha))
)
return gradient
class QuantumNeuralNetwork:
"""Variational Quantum Neural Network"""
def __init__(self, framework: QuantumMLFramework):
self.framework = framework
self.num_layers = 3
self.num_parameters = self.framework.num_qubits * self.num_layers * 2
self.parameters = None
self.ansatz = None
def fit(self, X: np.ndarray, y: np.ndarray, epochs: int = 100) -> Dict:
"""Train quantum neural network"""
print("Training Quantum Neural Network...")
# Create quantum circuit ansatz
self.ansatz = self.framework.create_ansatz(self.num_parameters, self.num_layers)
# Initialize parameters
self.parameters = np.random.uniform(0, 2*np.pi, self.num_parameters)
# Training history
loss_history = []
accuracy_history = []
# Training loop
for epoch in range(epochs):
# Forward pass
predictions = self._forward_pass(X)
# Compute loss
loss = self._compute_loss(predictions, y)
loss_history.append(loss)
# Compute accuracy
binary_predictions = (predictions > 0.5).astype(int)
accuracy = np.mean(binary_predictions == y)
accuracy_history.append(accuracy)
# Backward pass (parameter update)
self._update_parameters(X, y, learning_rate=0.01)
if epoch % 10 == 0:
print(f"Epoch {epoch}: Loss = {loss:.4f}, Accuracy = {accuracy:.4f}")
return {
'final_loss': loss_history[-1],
'final_accuracy': accuracy_history[-1],
'loss_history': loss_history,
'accuracy_history': accuracy_history
}
def predict(self, X: np.ndarray) -> np.ndarray:
"""Make predictions using trained QNN"""
if self.parameters is None:
raise ValueError("Model must be trained before making predictions")
return self._forward_pass(X)
def _forward_pass(self, X: np.ndarray) -> np.ndarray:
"""Forward pass through quantum neural network"""
predictions = []
for x in X:
# Create quantum circuit with data encoding and ansatz
circuit = QuantumCircuit(self.framework.num_qubits, 1)
# Data encoding (simplified)
for i, val in enumerate(x[:self.framework.num_qubits]):
circuit.ry(val, i)
# Apply parameterized ansatz
if QISKIT_AVAILABLE:
bound_ansatz = self.ansatz.bind_parameters(self.parameters)
circuit.compose(bound_ansatz, inplace=True)
# Measurement
circuit.measure(0, 0) # Measure first qubit
# Execute circuit
if QISKIT_AVAILABLE:
job = execute(circuit, self.framework.backend, shots=self.framework.shots)
result = job.result()
counts = result.get_counts()
# Convert to probability
prob_1 = counts.get('1', 0) / self.framework.shots
else:
# Simulate quantum measurement
prob_1 = self._simulate_measurement(x)
predictions.append(prob_1)
return np.array(predictions)
def _compute_loss(self, predictions: np.ndarray, targets: np.ndarray) -> float:
"""Compute loss function"""
# Binary cross-entropy loss
epsilon = 1e-15 # Prevent log(0)
predictions = np.clip(predictions, epsilon, 1 - epsilon)
loss = -np.mean(
targets * np.log(predictions) + (1 - targets) * np.log(1 - predictions)
)
return loss
def _update_parameters(self, X: np.ndarray, y: np.ndarray, learning_rate: float):
"""Update quantum neural network parameters"""
# Parameter-shift rule for gradient computation
gradients = np.zeros_like(self.parameters)
for i in range(len(self.parameters)):
# Forward pass with positive shift
self.parameters[i] += np.pi / 2
pred_plus = self._forward_pass(X)
loss_plus = self._compute_loss(pred_plus, y)
# Forward pass with negative shift
self.parameters[i] -= np.pi
pred_minus = self._forward_pass(X)
loss_minus = self._compute_loss(pred_minus, y)
# Compute gradient using parameter-shift rule
gradients[i] = 0.5 * (loss_plus - loss_minus)
# Restore original parameter value
self.parameters[i] += np.pi / 2
# Update parameters
self.parameters -= learning_rate * gradients
def _simulate_measurement(self, x: np.ndarray) -> float:
"""Simulate quantum measurement (when Qiskit not available)"""
# Simplified simulation of quantum neural network output
# In practice, this would involve full quantum state simulation
# Use a classical neural network as approximation
weighted_sum = np.dot(x[:len(self.parameters)], self.parameters[:len(x)])
probability = 1 / (1 + np.exp(-weighted_sum)) # Sigmoid activation
return probability
class QuantumPCA:
"""Quantum Principal Component Analysis"""
def __init__(self, framework: QuantumMLFramework):
self.framework = framework
self.eigenvalues = None
self.eigenvectors = None
self.num_components = None
def fit(self, X: np.ndarray, num_components: int = 2) -> Dict:
"""Perform quantum PCA on data"""
print("Performing Quantum PCA...")
self.num_components = num_components
# In a real quantum PCA implementation, this would use:
# 1. Quantum phase estimation for eigenvalue computation
# 2. Quantum matrix exponentiation
# 3. Quantum state preparation and measurement
# For simulation, we use classical PCA with quantum-inspired optimization
covariance_matrix = np.cov(X.T)
# Simulate quantum eigenvalue estimation
eigenvalues, eigenvectors = self._quantum_eigendecomposition(covariance_matrix)
# Sort by eigenvalues (descending)
idx = np.argsort(eigenvalues)[::-1]
self.eigenvalues = eigenvalues[idx]
self.eigenvectors = eigenvectors[:, idx]
# Keep only top components
self.eigenvalues = self.eigenvalues[:num_components]
self.eigenvectors = self.eigenvectors[:, :num_components]
# Calculate explained variance ratio
explained_variance_ratio = self.eigenvalues / np.sum(eigenvalues)
return {
'eigenvalues': self.eigenvalues,
'explained_variance_ratio': explained_variance_ratio,
'total_variance_explained': np.sum(explained_variance_ratio)
}
def transform(self, X: np.ndarray) -> np.ndarray:
"""Transform data to quantum principal component space"""
if self.eigenvectors is None:
raise ValueError("Model must be fitted before transformation")
# Project data onto principal components
X_centered = X - np.mean(X, axis=0)
X_transformed = np.dot(X_centered, self.eigenvectors)
return X_transformed
def _quantum_eigendecomposition(self, matrix: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
"""Simulate quantum eigenvalue decomposition"""
# In a real quantum implementation, this would use:
# - Quantum phase estimation algorithm
# - Variational quantum eigensolver (VQE)
# - Quantum approximate optimization algorithm (QAOA)
# For now, use classical eigendecomposition
eigenvalues, eigenvectors = np.linalg.eigh(matrix)
return eigenvalues, eigenvectors
class QuantumKMeans:
"""Quantum k-means clustering algorithm"""
def __init__(self, framework: QuantumMLFramework):
self.framework = framework
self.centroids = None
self.labels = None
self.k = None
def fit(self, X: np.ndarray, k: int, max_iters: int = 100) -> Dict:
"""Perform quantum k-means clustering"""
print(f"Performing Quantum k-means with k={k}...")
self.k = k
n_samples, n_features = X.shape
# Initialize centroids randomly
self.centroids = X[np.random.choice(n_samples, k, replace=False)]
# Convergence tracking
inertia_history = []
for iteration in range(max_iters):
# Assign points to clusters using quantum distance computation
labels = self._quantum_assign_clusters(X)
# Update centroids
new_centroids = np.zeros_like(self.centroids)
for i in range(k):
cluster_points = X[labels == i]
if len(cluster_points) > 0:
new_centroids[i] = np.mean(cluster_points, axis=0)
else:
new_centroids[i] = self.centroids[i] # Keep old centroid
# Check convergence
centroid_shift = np.sum(np.linalg.norm(new_centroids - self.centroids, axis=1))
self.centroids = new_centroids
# Calculate inertia (within-cluster sum of squares)
inertia = self._calculate_inertia(X, labels)
inertia_history.append(inertia)
if centroid_shift < 1e-6:
print(f"Converged after {iteration + 1} iterations")
break
self.labels = labels
return {
'n_iterations': iteration + 1,
'final_inertia': inertia_history[-1],
'inertia_history': inertia_history,
'centroids': self.centroids
}
def predict(self, X: np.ndarray) -> np.ndarray:
"""Assign new points to clusters"""
if self.centroids is None:
raise ValueError("Model must be fitted before prediction")
return self._quantum_assign_clusters(X)
def _quantum_assign_clusters(self, X: np.ndarray) -> np.ndarray:
"""Assign points to clusters using quantum distance computation"""
labels = np.zeros(len(X), dtype=int)
for i, point in enumerate(X):
# Compute quantum distances to all centroids
distances = []
for centroid in self.centroids:
# Quantum distance computation
# In real implementation, this would use quantum swap test
# or other quantum distance algorithms
quantum_distance = self._quantum_distance(point, centroid)
distances.append(quantum_distance)
# Assign to nearest centroid
labels[i] = np.argmin(distances)
return labels
def _quantum_distance(self, x1: np.ndarray, x2: np.ndarray) -> float:
"""Compute quantum distance between two points"""
if QISKIT_AVAILABLE:
# Use quantum feature map and kernel for distance
feature_map = self.framework.create_feature_map(len(x1))
kernel_value = self.framework.quantum_kernel(x1, x2, feature_map)
# Convert kernel to distance
# K(x,y) = āØĻ(x)|Ļ(y)ā©, distance = ||Ļ(x) - Ļ(y)||²
distance = 2 * (1 - kernel_value)
else:
# Classical simulation of quantum distance
distance = np.linalg.norm(x1 - x2)
return distance
def _calculate_inertia(self, X: np.ndarray, labels: np.ndarray) -> float:
"""Calculate within-cluster sum of squares"""
inertia = 0.0
for i in range(self.k):
cluster_points = X[labels == i]
if len(cluster_points) > 0:
cluster_inertia = np.sum(
[self._quantum_distance(point, self.centroids[i])**2
for point in cluster_points]
)
inertia += cluster_inertia
return inertia
# Simulation functions when Qiskit is not available
def simulate_quantum_computation():
"""Demonstrate quantum ML concepts with classical simulation"""
print("Simulating Quantum Machine Learning...")
# Generate sample data
np.random.seed(42)
X = np.random.randn(100, 4)
y = (X[:, 0] + X[:, 1] > 0).astype(int)
# Initialize quantum ML framework
config = {
'num_qubits': 4,
'shots': 1024
}
framework = QuantumMLFramework(config)
# Test Quantum SVM
print("\n=== Quantum SVM ===")
qsvm = framework.algorithms['qsvm']
svm_result = qsvm.fit(X, y)
print(f"Training accuracy: {svm_result['training_accuracy']:.3f}")
# Test Quantum Neural Network
print("\n=== Quantum Neural Network ===")
qnn = framework.algorithms['qnn']
qnn_result = qnn.fit(X, y, epochs=20)
print(f"Final accuracy: {qnn_result['final_accuracy']:.3f}")
# Test Quantum PCA
print("\n=== Quantum PCA ===")
qpca = framework.algorithms['qpca']
pca_result = qpca.fit(X, num_components=2)
print(f"Variance explained: {pca_result['total_variance_explained']:.3f}")
# Test Quantum K-means
print("\n=== Quantum K-means ===")
qkmeans = framework.algorithms['qkmeans']
kmeans_result = qkmeans.fit(X, k=2)
print(f"Final inertia: {kmeans_result['final_inertia']:.3f}")
return {
'qsvm': svm_result,
'qnn': qnn_result,
'qpca': pca_result,
'qkmeans': kmeans_result
}
# Example usage
if __name__ == "__main__":
results = simulate_quantum_computation()
print("\nQuantum ML simulation completed!")
Quantum Advantages for Machine Learning
Quantum Superposition
Quantum bits can exist in multiple states simultaneously
Quantum Entanglement
Quantum correlations between distant qubits
Quantum Interference
Amplification of correct answers and cancellation of wrong ones
Quantum Parallelism
Massive parallel computation through quantum superposition
Current Limitations & Challenges
NISQ Era Constraints
- ⢠Limited number of qubits (50-1000)
- ⢠High error rates (0.1-1%)
- ⢠Short coherence times
- ⢠No quantum error correction
Implementation Challenges
- ⢠Classical data encoding overhead
- ⢠Measurement and readout errors
- ⢠Limited quantum memory
- ⢠Circuit depth limitations
Theoretical Barriers
- ⢠Barren plateau phenomena
- ⢠Exponential measurement complexity
- ⢠Classical simulation competition
- ⢠Quantum advantage proofs
Practical Constraints
- ⢠High development costs
- ⢠Specialized hardware requirements
- ⢠Limited quantum software tools
- ⢠Skills and expertise gap
š Test Your Understanding
What is the primary advantage of quantum superposition in machine learning?
Related Technologies
Qiskitā
Open-source quantum computing framework
Cirqā
Google's quantum computing library
PennyLaneā
Quantum machine learning library
Amazon Braketā
Quantum computing service on AWS
IBM Quantumā
IBM's quantum computing platform
TensorFlow Quantumā
TensorFlow library for quantum ML
PyTorchā
Classical ML framework for hybrid systems
NumPyā
Numerical computing for quantum simulations